






mechanisms of plasticity reminiscent of metallic glasses (e.g.,
shear banding, pressure-sensitive yield criteria) (28).
To understand the scaling relationship in our relatively athermal

colloidal micropillars, we model the fundamental building block
of cooperative plastic flow in the framework of Eshelby-like elas-
ticity. Specifically, we consider the change in free energy associated
with the introduction of an ellipsoidal inclusion—representing
the cooperative shear transformation—in an elastic matrix sub-
jected to an applied far-field stress. This approach is motivated
by experiments (15, 17, 29) and simulations (30, 31) on the de-
formation of amorphous solids that suggest that the fundamental
plastic event is a cooperative, shear-induced rearrangement of
∼10-100 particles (32), referred to as a shear transformation
zone (STZ) (Fig. 3). After operation, in which the STZ evolves
from the initial to the deformed state, an elastic strain field is
generated in the STZ and the surrounding matrix owing to
elastic compatibility. The corresponding change in the Gibbs free
energy due to the introduction of an inclusion in a finite elastic
matrix subjected to an applied stress has been analyzed using
Eshelby’s method, where the confined transformation is modeled
by allowing for a stress-free unconfined transformation followed
by reinsertion into and elastic accommodation by the matrix (33–
35). In addition to the elastic energy of the confined shear
transformation, the applied stress field interacts with the stress
field generated by the inclusion, resulting in an extra part of the
Gibbs free energy (34) (see derivation in SI Text). Taken to-
gether, the elastic energy and interaction terms yield a simple
expression for the change in the Gibbs free energy associated
with the introduction of the inclusion
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Here, σIij is the stress field inside the confined inclusion, eTij is
the unconfined transformation strain of the inclusion, σ∞ij is the
applied far-field stress, and Ω is the volume of the inclusion. The
integrals are readily evaluated because the stress and strain fields
inside of an ellipsoidal inclusion are spatially uniform. The stress
field inside the inclusion can be written as

σIij =CijklðSklmn − δkmδlnÞeTmn; [2]

where Cijkl is the stiffness tensor, Sklmn is Eshelby’s tensor, and δij is
the Kronecker delta. Eshelby’s tensor relates the unconfined trans-
formation strain of the inclusion to the confined strain of the

inclusion (i.e., the strain after being reinserted in the matrix) (33).
The shear bands that form in the micropillars are oriented approx-
imately 45° from the pillar axis, which is similar to the orientation of
shear bands found in compressed BMGs (bulk metallic glass) (26)
and soil pillars (12). Although it is believed that the nature of
external loading may bias the orientation of shear bands (toward
the pillar axis in compression) (36), we lack the ability to measure
shear band orientation to such precision. Therefore, for the energy
analysis, we neglect any strong pressure-dependent yielding and
assume a triaxial (i.e., each axis is unique in its length, a> b> c)
ellipsoidal inclusion with the major axis, a, lying along the direction
of maximum shear stress, α= 45° (Fig. 3). Following the work of
Argon and Shi, we define the transformation strain of the uncon-
fined inclusion as
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which can be described by the scalar dilatational strain magnitude
eTo and the the scalar shear strain magnitude γTo . Furthermore, we
assume the transformation dilatancy β≡ eCo =γ

C
o ≈ 1 (37). The su-

perscript C denotes the confined transformation strain and may be
related to the unconfined transformation strain with superscript
T by Eshelby’s tensor Sijkl (37). Assuming an isotropic elastic me-
dium, Eq. 2 reduces to
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where E is Youngs modulus, and ν is Poisson’s ratio (39).
This expression represents the self-stress of the inclusion, which
is completely defined by the material’s elastic constants, E and
ν, and the transformation strain magnitudes eTo and γTo . For
uniaxial compression and the reference basis defined in Fig. 3,
σ∞ij can be written as

σ∞ij =
σ

2

2

4
−1 1 0
1 −1 0
0 0 0

3

5 ;

where σ =F=Ao is the applied stress, and compression is nega-
tive. Eq. 1 then reduces to
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With the assumption that β= 1, eTo can be related to γTo (SI
Text). We assume that at σmax, ΔG= 0, and on a further increase
in the applied stress, the introduction of an inclusion (i.e., oper-
ation of a shear transformation) becomes energetically favorable.
The relationship between strength and stiffness thus becomes (see
SI Text for full expression for Θ)

σmax

E
= γToΘðν; β= 1Þ: [4]

We assume E=Eload and values of ν between 0.15 (14) and
0.45 and find a best fit for the data with γTo as the free parameter.
Over the range of considered, γTo ranges from 0.026 for ν= 0:45
to γTo = 0:033 for ν= 0:15; thus, γTo is largely insensitive to ν.
Because our system is dissipative, the true elastic modulus is
larger than the stiffness measured on loading. Assuming that
50% of the work done on the system during loading is stored as
elastic energy (21), the true elastic modulus is underestimated by

x1

x2

�    45º=

A B

Fig. 3. (A, Upper) An idealized cooperative rearrangement induced by an
applied shear stress. (Lower) A continuum representation of the rearrange-
ment. (B) The reference axes defined for the energy analysis. The ellipsoid’s
major axis, a, lies along x1 and its minor axis, c, lies along x2.
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a factor of 2 (2Eload =Eelastic; see SI Text and Figs. S2 and S3 for
load-unload measurements and evidence of quasi-linear load-
ing). This error results in an overestimation of γTo by a factor of 2.
Therefore, we take γTo =2 and γTo as bounds on the magnitude of
the characteristic transformation shear strain. Dissipation is
likely a result of a combination of frictional sliding at particle
contacts and STZ activity. Recent experiments of sheared jam-
med particles at an interface (12) have shown that below a crit-
ical strain of 2%, STZ activity, although present, is minimal. In
this confined system, the dramatic increase in STZ operation at
the critical strain results in a rapid increase in the loss modulus.
In our free-standing pillars, the instability manifests as macro-
scopic yield and the development of shear bands. Our motivation
in setting ΔG= 0 at σmax is to extract a critical strain at which
STZs are sufficiently active to lead to shear banding.
The magnitude of γTo found using this analysis of our micropillar

data is similar to the values found in simulations of disordered
Lennard–Jones particles (39) and experiments of sheared bubble
rafts (17) in which displacement fields can be measured directly.
Dasgupta et al. compared the nonaffine displacement fields gen-
erated by an STZ in a molecular dynamics simulation to the
displacement field generated by a general Eshelby trans-
formation strain (39). These authors found good agreement
between the fields when using a traceless Eshelby transformation
strain with two nonzero eigenvalues and γTo = 0:08, which agrees
well with our value of ∼ 0:03. Argon estimated a shear trans-
formation strain value γTo = 0:125 based on observations of bub-
ble rafts (32), and Argon and Shi later extracted a range of
γTo ≈ 0:10∼ 0:14 for MGs (37) using a viscoplasticity model.
Particle-level measurements of the transformation strain around
a rearrangement in a sheared colloidal glass find γTo ≈ 0:08∼ 0:26
(15). Recent kinetic Monte Carlo (kMC) simulations of MGs
that have been successful in capturing shear band formation
use a characteristic STZ strain γTo = 0:10 when determining the
free-energy change associated with STZ operation (35, 40, 41).
This similiarity in shear transformation kinematics surprisingly
extends to other classes of amorphous solids. Simulations of
sheared amorphous silicon—a network glass with strongly di-
rectional bonding—show γTo ∼ 0:015 (42). The authors of this
study note that, although the characteristic size of shear trans-
formations appears to be bonding dependent (∼1 nm in metallic
glasses, ∼3 nm in amorphous silicon, and ∼10 nm in glassy poly-
mers) (42), γTo remains similar across systems. Indeed, glassy
polymers that are known to develop shear bands on yielding, such
as polymethyl methacrylate (PMMA) (43) and PS (44), show shear
transformation strains similar to those of MGs (γTo ≈ 0:11 and
γTo ≈ 0:08 for PMMA and PS, respectively) (38) (see SI Text, Fig.
S4, and Table S1 for a table of compiled experimental values of γTo
and γy for MGs, glassy polymers, and the colloidal micropillars in
this work). The robust critical strain appears to break down in
glasses that show deformation morphology other than shear
banding. For example, the macroscopic critical shear strain in
amorphous silica nanowires that exhibit brittle behavior and
cleavage fracture is γy ≈ 0:2 (45), much larger than the value

found in MGs and glassy polymers. Thus, the cooperative shear
mechanism discussed in this work hinges on the intrinsic capacity
for plastic flow that precedes final fracture.
This simple model does not capture the complex dynamical

interaction of activated and nucleating STZs that determine
the ultimate deformation morphology, which likely governs
the extent of plastic deformation and the spatio-temporal
evolution from individual STZ operation to macroscopic
shear localization. However, the robustness of the correlation
between σmax and Eload for a wide range of structural config-
urations brought about by mechanical annealing suggests that
incipient operation of STZs and macroscopic plastic flow along
shear planes occur nearly simultaneously. In other words, the
transition from the quasi-elastic to plastic regimes is sharp with
respect to stress. This can be inferred as a signature of a system
driven in the athermal limit with a relatively narrow distribution
of barrier energies defining the fundamental unit of plastic de-
formation. In contrast to thermal systems, such as metallic
glasses, maneuvering within the complex potential energy land-
scape of our athermal colloidal systems is not aided by thermal
activation. We assert that our system is athermal by considering
the nondimensional parameter kBT

e , where kB is Boltzmann’s
constant, T is the temperature, and « is a measure of the in-
teraction energy between particles assuming Hertzian contact.
This parameter is a measure of the thermal energy relative to the
elastic energy stored in the particles and vanishes in the athermal
limit. For our system, kBT

e ∼ 1× 10−14, much less than the value
found in other systems treated as athermal (46). The significance
of rate effects that could arise from capillary bridge formation is
quantified in the parameter _γτ, where _γ is the strain rate and τ is
the timescale associated with the nucleation of water capillaries.
Assuming a capillary nucleation timescale similar to that mea-
sured on silicon surfaces (47), _γτ∼ 1× 10−11, indicating that
nucleation events occur at timescales much smaller than the
timescale associated with the imposed strain. With thermal
fluctuations absent, the applied stress alone surmounts the local
energy maxima, ultimately driving the cooperative events. In
turn, the compatibility constraint of the elastic matrix on shear
transformation (cooperative rearrangement of a collection of
particles with a characteristic shear strain γTo ) provides the long-
range interaction to drive localized failure. Taken as a whole, the
similarities in macroscopic yielding strain, characteristic STZ
strain, and shear band morphology between our colloidal pack-
ings and metallic glasses, despite the dissipative nature of our
particle–particle interactions, lend support to the notion of
a universal cooperative plastic event unique to amorphous solids
with the capacity for plastic flow.
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SI Text
Error and Uncertainty Analysis. The uncertainties in measured quan-
tities, δ, are

transmitted force δF =

8<
:

5× 10−3 N 1000 g−F transducer
5× 10−4 N 100 g−F transducer
5× 10−5 N 10 g−F transducer

;

specimen diameter δD = 2 μm;

specimen cross-sectional area δAo =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδDÞ2ðπDÞ2

q
;

specimen length δlo = 2 μm;

specimen change in length δΔl = 10× 10−4 × lo;

unfilled capillary mass δmunfilled = 2 μg;

filled capillary mass δmfilled = 2 μg;

micropillar length in capillary δL = 10 μm:

We assume an uncorrelated propagation of error. The uncer-
tainties in the reported quantities hϕi, σmax, and Eload are given by

hϕi=
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πðD=2Þ2L ;
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For the linear fit of σmax = βEload, we report the 95% CI for the
regression analysis.

Effects of Dissipation in Stiffness Determination. Prior work (1) has
shown that the micropillars are quite dissipative even at small
strains. We define an efficiency, η, which is the ratio of work
done by the pillar on loading to the work done on the pillar
during loading

η=
Wunload

Wload
=
Eunloade

2
elastic

Eloade
2
total

;

with etotal = eelastic + eplastic. By construction, η= eelastic
etotal

, so rearrang-
ing yields

Eload = ηEunload:

Assuming η= 50%, we underestimate the elastic component of
stiffness (EunloadÞ by a factor of 2, i.e., 2Eload =Eunload. Because
the transformation strain magnitude, ep, is inversely proportional
to E (γTo ∝ 1=E; Eq. 4), we overestimate the transformation strain
by a factor of 2 by using Eload in the energy analysis. Therefore,
our reported value for γTo should be considered an upper bound.
In previous experiments, we quantified the dissipation in a

specimen when compressed to small strains as a function of RH.
Briefly, we found a strong dependence of η on RH with a signifi-
cant decrease in η—equivalently, an increase in dissipation—for
RH above ∼ 40%. An example of an experimental compression
cycle at RH = 50% is shown in Fig. S3.

Gibbs Free Energy of an Inclusion in an Elastic Matrix. For com-
pleteness, we reproduce the derivation by Mura (2) of the change
in the Gibbs free energy, G, of an inclusion in an elastic matrix
with an applied traction. Define

eij =
1
2

�
∂ui
∂xj

+
∂uj
∂xi

�
≡ total strain;

epij ≡ eigenstrain or transformation strain;

eij ≡ elastic strain;

σij =Cijklekl ≡ stress:

The elastic strain energy of a body subjected to an applied traction
σ∞ij and an internal stress due to an inclusion σij is given by

W p =
1
2

Z
V

�
σ∞ij + σij

��
e∞ij + eij − epij

�
dV with σ∞ij =Cijkle

∞
ij :

Equilibrium ensures that σij; j = 0 and σijnj = 0 at the surface S. In-
tegration by parts givesZ

V
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Z
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u∞ij + uij
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dV = 0:

Similarly, σ∞ij; j = 0. Because e∞ij = e∞ij and eij = eij − epij and using the
symmetry Cijkl =Cklij
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The total potential energy is given by

G=W p −
Z
S

F∞
i

�
ui + u∞i

�
dS;

where the second term is the work done at the boundary by the
applied traction, and F∞

i = σ∞ij nj. Without any inclusions (epij = 0),
G=Go

Go =
1
2

Z
V

σ∞ij e
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ij dV −

Z
S

F∞
i u∞ij dS:

Without any applied tractions (σ∞ij = 0), G=G1

G1 =−
1
2

Z
V

σije
p
ijdV :

The interaction between the strain field generated by the inclu-
sions and the applied traction is

ΔG=G−Go −G1 =−
Z
S

σ∞ij uinjdS=−
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by Gauss’s theorem and the fact that
R
V
σ∞ij ðui;j − epijÞdV = 0 (see

above). Therefore, with spatially homogeneous stress and
strain fields

ΔG= −
Z
V

σ∞ij e
p
ijdV =−σ∞ij e

p
ij:

For the case where the body is under an applied traction and
inclusions are introduced, the change in free energy is given by

ΔG=G−Go =ΔG+G1 =−
1
2
σije

p
ij − σ∞ij e

p
ij;

which is Eq. 1.

Derivation of the Stress Field for a Prescribed Transformation Strain.
The tensorial infinitesimal strain, eij, is given by

eij =
1
2

�
∂ui
∂xj

+
∂uj
∂xi

�
=

0
@ e11 e12 e13

e12 e22 e23
e13 e23 e33

1
A=

0
BBBBB@

e11
γ12
2

γ13
2

γ12
2

e22
γ23
2

γ13
2

γ23
2

e33

1
CCCCCA:

Define the stiffness tensor, Cijkl, for an isotropic homogeneous
solid as

Cijkl =
Eν

ð1+ νÞð1− 2νÞ δijδkl +
E

2ð1+ νÞ
�
δikδjl + δilδjk

�
;

and the constitutive relation

σij =Cijklekl;

where ekl is now the elastic component of the strain. Argon and
Shi (3) use Eshelby’s tensor for a spherical inclusion, given by

Sijkl =
5ν− 1
15ð1− νÞ δijδkl +

4− 5ν
15ð1− νÞ

�
δikδjl + δilδjk

�
:

To relate the confined strain, eCij , to the transformation strain, eTij ,
of the inclusion

ecij = SijkleTkl:

The authors assume two components of eTkl

eTkl =
eTo
3

0
@ 1 0 0

0 1 0
0 0 1

1
A+

γTo
2

0
@ 0 1 0

1 0 0
0 0 0

1
A;

where the first term accounts for dilatation and the second for
a pure shear. The stress inside the inclusion, σIij, is given by

σIij =Cijkl
�
Sklmne

T
mn − eTkl

�
:

The elastic energy in both the inclusion and matrix is given as

Eelastic =−
1
2

Z
Ωf

σIije
T
ij dV :

For the case of a spherical inclusion, in which σIij and eTij are
constants, this expression becomes

Eelastic = −
1
2
σIije

T
ijΩf :

Considering only the dilatational component of eTkl and using the
relationship E= 2μð1+ νÞ

σIij =
2EeTo

9ðν− 1Þ

0
B@

1 0 0
0 1 0
0 0 1

1
CA and Eelastic =

E
9ð1− νÞ

�
eTo
�2

=
2μð1+ νÞ
9ð1− νÞ

�
eTo
�2
;

which is the same as the second term of equation 7 in ref. 3. Now,
considering only the shear component of eTkl yields

σIij =
EγTo ð7− 5νÞ
30ðν2 − 1Þ

0
B@

0 1 0
1 0 0
0 0 0

1
CA and

Eelastic =
Eð7− 5νÞ
60ð1− ν2Þ

�
γTo
�2

=
μð7− 5νÞ
30ð1− νÞ

�
eTo
�2
;

which is the same as the first term of equation 7 in ref. 3. In the
presence of an applied far-field stress, the change in Gibb’s free
energy becomes (see previous section)
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ΔG= −
1
2
σ I
ije

T
ijΩf − σ∞ij eijΩf :

For uniaxial compression and our assumed orientation of the in-
clusion, the applied stress is

σij =
σ

2

0
@−1 1 0

1 −1 0
0 0 0

1
A:

Therefore, the change in free energy is

ΔG=
E

ν2 − 1

	
ν+ 1
9
�
eTo
�2

+
7− 5ν
60

�
γTo
�2
− σ

�
2eTo − 3γTo

�
6

:

Argon and Shi define the transformation dilatancy as

β=
eco
γco

=
45ð1− νÞ2eTo

2ð1+ νÞð4− 5νÞγTo
:

From measurements on an amorphous bubble raft, the authors
estimate β≈ 1 (3). Therefore

eTo = γTo
2ð1+ νÞð4− 5νÞ

45ð1− νÞ2 ;

with this relationship

ΔG=
ΩE
ν2 − 1

(
ν+ 1
9

"
2ð1+ νÞð4− 5νÞ

45ð1− νÞ2 γTo

#2
+
7− 5ν
60

�
γTo
�2)

+
ΩσγTo
2

−
ΩσγTo
3

2ð1+ νÞð4− 5νÞ
45ð1− νÞ2 :

Setting ΔG= 0 and rearranging yields

σ

E
=
γTo
�
5;675ν5−33;365ν4+70;934ν3−74;578ν2+39;967ν−8;761

�
270ðν− 1Þ3ð155ν3 − 111ν2 − 147ν+ 119Þ

≡ γTo θðνÞ:

1. Strickland DJ, et al. (2014) Synthesis and mechanical response of disordered colloidal
micropillars. Phys Chem Chem Phys 16(22):10274–10285.

2. Mura T (1987) Micromechanics of Defects in Solids (Springer, Berlin), Vol 3.

3. Argon AS, Shi L (1983) Development of visco-plastic deformation in metallic glasses.
Acta Metall 31(4):499–507.

500 μm

500 μm

(a)

(b)

Fig. S1. Laser-scanning confocal micrographs of deformed micropillar specimens. (A) A specimen with ϕ=0:559 compressed at RH= 60%. Failure results from
the development of a shear band that propagates from the specimen/punch interface to the specimen surface. (B) A specimen with ϕ= 0:687 compressed at
RH= 50%. The darker region outlined by the dashed red line has been sheared out of plane.
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Fig. S2. Idealized compressive response showing loading and unloading moduli.

Fig. S3. Experimental compressive response of a colloidal micropillar at 50% RH. The stiffness on unloading is larger than the measured stiffness on loading.

Fig. S4. A comparison of the shear component of the transformation strain, γTo , for colloidal micropillars, glassy polymers, and metallic glasses (see Table S1 for
values and references). Atlhough the elastic moduli of the materials span five orders of magnitude, the kinematics of the proposed plastic event remain
remarkably similar.
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